

Raspberry PI Setup and Programming By Sanjay Chatterjee

Table of Contents

 Getting to Know the Raspberry Pi

o Raspberry Pi Board Overview

o Raspberry Pi vs Arduino

 Setting Up the Raspberry Pi

o Required Hardware

o Optional Hardware

o Software

o Final Setup

 Running Python on the Raspberry Pi

o Using the Mu Editor

o Editing Remotely Over SSH

o Creating a python-projects Directory

 Interacting With Physical Components

o Electronic Components

o GPIO Pins

o Tactile Button

o LED

o Buzzer

o Motion Sensor

 Building a Motion-Activated Alarm System

o Wiring

o Code

o Next Steps

 Conclusion

The Raspberry Pi is one of the leading physical computing boards on the market. From

hobbyists building DIY projects to students learning to program for the first time, people use

the Raspberry Pi every day to interact with the world around them. Python comes built in on

the Raspberry Pi, so you can take your skills and start building your own Raspberry Pi

projects today.

In this tutorial, you’ll learn to:In this tutorial, you’ll learn to:In this tutorial, you’ll learn to:In this tutorial, you’ll learn to:

 Set up a new Raspberry PiRaspberry PiRaspberry PiRaspberry Pi

 Run Python on the Raspberry Pi using the Mu editorMu editorMu editorMu editor or remotely over SSHSSHSSHSSH

 Read input from physical sensorsphysical sensorsphysical sensorsphysical sensors connected to the Raspberry Pi

 Send output to external componentsexternal componentsexternal componentsexternal components using Python

 Create unique projects with Python on the Raspberry Pi

Getting to Know the Raspberry PiGetting to Know the Raspberry PiGetting to Know the Raspberry PiGetting to Know the Raspberry Pi

The Raspberry Pi is a single-board computer developed by the Raspberry Pi Foundation, a

UK-based charity organization. Originally designed to provide young people with an

a2ordable computing option to learn how to program, it has developed a massive following in

the maker and DIY communities because of its compact size, full Linux environment, and

general-purpose input–output (GPIOGPIOGPIOGPIO) pins.

With all the features and capabilities that are packed into this small board, there’s no shortage

of projects and use cases for the Raspberry Pi.

Some example projects include the following:

 Line-following robot

 Home weather station

 Retro gaming machine

 Real-time object detection camera

 Minecraft server

 Button-controlled music box

 Media center

 Remote experiments on the International Space Station

If you can think of a project that would benefit from having a credit card–sized computer

attached to it, then someone has probably used a Raspberry Pi to do it. The Raspberry Pi is a

fantastic way to bring your Python project ideas to life.

Raspberry Pi Board Overview

The Raspberry Pi comes in a variety of form factors for di2erent use cases. In this tutorial,

you’ll be looking at the most recent version, the Raspberry Pi 4.

Below is the board layout of the Raspberry Pi 4. While this layout is slightly di2erent from

previous models of the Raspberry Pi, most of the connections are the same. The setup

described in the next section should be the same for both a Raspberry Pi 3 and a Raspberry Pi

4:

The Raspberry Pi 4 board contains the following components:

 GeneralGeneralGeneralGeneral----purpose inputpurpose inputpurpose inputpurpose input––––output pins:output pins:output pins:output pins: These pins are used to connect the Raspberry Pi

to electronic components.

 Ethernet port:Ethernet port:Ethernet port:Ethernet port: This port connects the Raspberry Pi to a wired network. The Raspberry

Pi also has Wi-Fi and Bluetooth built in for wireless connections.

 Two USB 3.0 and two USB 2.0 ports:Two USB 3.0 and two USB 2.0 ports:Two USB 3.0 and two USB 2.0 ports:Two USB 3.0 and two USB 2.0 ports: These USB ports are used to connect peripherals

like a keyboard or mouse. The two black ports are USB 2.0 and the two blue ports are

USB 3.0.

 AV jack:AV jack:AV jack:AV jack: This AV jack allows you to connect speakers or headphones to the Raspberry

Pi.

 Camera Module port:Camera Module port:Camera Module port:Camera Module port: This port is used to connect the o?cial Raspberry Pi Camera

Module, which enables the Raspberry Pi to capture images.

 HDMI ports:HDMI ports:HDMI ports:HDMI ports: These HDMI ports connect the Raspberry Pi to external monitors. The

Raspberry Pi 4 features two micro HDMI ports, allowing it to drive two separate

monitors at the same time.

 USB power port:USB power port:USB power port:USB power port: This USB port powers the Raspberry Pi. The Raspberry Pi 4 has

a USB TypeUSB TypeUSB TypeUSB Type----CCCC port, while older versions of the Pi have a micromicromicromicro----USBUSBUSBUSB port.

 External display port:External display port:External display port:External display port: This port is used to connect the o?cial seven-inch Raspberry

Pi touch display for touch-based input on the Raspberry Pi.

 microSD card slot (underside of the board):microSD card slot (underside of the board):microSD card slot (underside of the board):microSD card slot (underside of the board): This card slot is for the microSD card that

contains the Raspberry Pi operating system and files.

A little later in this tutorial, you’ll use the components above to set up your Raspberry Pi.

Raspberry Pi vs Arduino

People often wonder what the di2erence is between a Raspberry Pi and an Arduino. The

Arduino is another device that is widely used in physical computing. While there is some

overlap in the capabilities of the Arduino and the Raspberry Pi, there are some distinct

di2erences.

The Arduino platform provides a hardware and software interface for

programming microcontrollers. A microcontroller is an integrated circuit that allows you to

read input from and send output to electronic components. Arduino boards generally have

limited memory, so they’re often used to repeatedly run a single program that interacts with

electronics.

The Raspberry Pi is a general-purpose, Linux-based computer. It has a full operating system

with a GUI interface that is capable of running many di2erent programs at the same time.

The Raspberry Pi comes with a variety of software preinstalled, including a web browser, an

o?ce suite, a terminal, and even Minecraft. The Raspberry Pi also has built-in Wi-Fi and

Bluetooth to connect to the Internet and external peripherals.

For running Python, the Raspberry Pi is often the better choice, as you get a full-fledged

Python installation out of the box without any configuration.

Setting Up the Raspberry PiSetting Up the Raspberry PiSetting Up the Raspberry PiSetting Up the Raspberry Pi

Unlike the Arduino, which requires only a USB cable and a computer to set up, the Raspberry

Pi has more hardware requirements to get up and running. After the initial setup, though,

some of these peripherals will no longer be required.

Required Hardware

The following hardware is required for the initial setup of your Raspberry Pi. If you end up

connecting to your Raspberry Pi over SSH, which you’ll look at later in this tutorial, then some

of the hardware below will not be needed after the initial setup.

Monitor

You’ll need a monitor during the initial setup and configuration of the operating system. If

you’ll be using SSH to connect to your Raspberry Pi, then you won’t need the monitor after

setup. Make sure your monitor has an HDMI input.

microSD Card

Raspberry Pi uses a microSD card to store the operating system and files. If you buy

a Raspberry Pi kit, then it will contain a preformatted microSD card for you to use. If you buy

a microSD card separately, then you’ll need to format it yourself. Look for a microSD card

with at least 16GB of capacity.

Keyboard and Mouse

A USB keyboard and mouse are required during the initial setup of the Raspberry Pi. Once the

setup is complete, you can switch to using Bluetooth versions of these peripherals if you

prefer. Later in this tutorial, you’ll see how to connect to the Raspberry Pi over SSH. If you

choose to connect this way, then a physical keyboard and mouse are not required after the

initial setup.

HDMI Cables

You’ll need an HDMI cable to connect the Raspberry Pi to a monitor. Di2erent Raspberry Pi

models have di2erent HDMI cable requirements:

Raspberry Pi 4Raspberry Pi 4Raspberry Pi 4Raspberry Pi 4 Raspberry Pi 3/2/1Raspberry Pi 3/2/1Raspberry Pi 3/2/1Raspberry Pi 3/2/1 Raspberry Pi ZeroRaspberry Pi ZeroRaspberry Pi ZeroRaspberry Pi Zero

micro HDMI HDMI mini HDMI

micro HDMI to HDMI HDMI to HDMI mini HDMI to HDMI

Depending on your model, you may need to purchase a special HDMI cable or adapter.

Power Supply

The Raspberry Pi uses a USB connection to power the board. Again, di2erent Raspberry Pi

models have di2erent USB connection and power requirements.

Below are the connection and power requirements for the di2erent models:

Raspberry Pi 4Raspberry Pi 4Raspberry Pi 4Raspberry Pi 4 Raspberry Pi 3/2/1/ZeroRaspberry Pi 3/2/1/ZeroRaspberry Pi 3/2/1/ZeroRaspberry Pi 3/2/1/Zero

USB-C Micro-USB

At least 3.0 amps At least 2.5 amps

To avoid any confusion when selecting a power supply, it’s recommended that you use the

o?cial power supply for your Raspberry Pi 4 or other model.

Optional Hardware

You can use a whole range of additional hardware with the Raspberry Pi to extend its

capabilities. The hardware items listed below are not required to use your Raspberry Pi but

would be useful to have on hand.

Case

It’s nice to have a case for your Raspberry Pi to keep its components from being damaged

during normal use. When selecting a case, make sure that you purchase the correct type for

your model of the Raspberry Pi.

Speakers

If you want to play music or sound from your Raspberry Pi, then you’ll need speakers. These

can be any standard speakers that have a 3.5 mm jack. You can connect the speakers to the

Raspberry Pi using the AV jack on the side of the board.

Heat Sinks (Recommended)

The Raspberry Pi can do a lot of computing for a little board. This is one of the reasons it’s so

awesome! But this does mean that it can get a little hot sometimes. It’s recommended that you

purchase a set of heatsinks to prevent the Raspberry Pi from throttling the CPU when it gets

too hot.

Software

The operating system for the Raspberry Pi is stored on a microSD card. If your card did not

come from an o?cial Raspberry Pi kit, then you’ll need to install the operating system on it.

There are multiple ways to set up the operating system on your Raspberry Pi. You can find out

more about the di2erent installation options on the Raspberry Pi website.

In this section, you’ll look at two ways to install RaspbianRaspbianRaspbianRaspbian, the o?cially supported Raspberry

Pi operating system, which is based on Debian Linux.

Option 1: Raspberry Pi Imager (Recommended)

The Raspberry Pi foundation recommends that you use the Raspberry Pi ImagerRaspberry Pi ImagerRaspberry Pi ImagerRaspberry Pi Imager for the initial

setup of your SD card. You can download the imager from the Raspberry Pi Downloads page.

Once on this page, download the appropriate version for your operating system:

After you’ve downloaded the Raspberry Pi Imager, start the application. You’ll see a screen

that allows you to select the operating system that you want to install along with the SD card

you would like to format:

You’ll be given two options when first loading the application: Choose OS and Choose SD Card.

Select Choose OS first.

Note:Note:Note:Note: There’s a chance that Windows may prevent the Raspberry Pi Imager from starting

because it’s an unrecognized application. If you receive a pop-up that says Windows protected

your PC, then you can still run the application by clicking More info and selecting Run anyway.

With the application running, click the Choose OS button and choose the first Raspbian option:

After selecting the Raspbian operating system, you need to select the SD card you’re going to

use. Make sure your microSD card is inserted into your computer and click Choose SD Card,

then select the SD card from the menu:

With the operating system and SD card selected, you can now click the Write button to begin

formatting the SD card and installing the operating system onto the card. This process may

take a few minutes to complete:

Once formatting and installation are complete, you should see a message that says the

operating system has been written to the SD card:

You can eject the SD card from your computer. Raspbian is now installed on your SD card,

and you’re ready to start connecting hardware to the Raspberry Pi!

Option 2: Install Raspbian From NOOBS

If for some reason you can’t use the Raspberry Pi Imager, then you can

download NOOBSNOOBSNOOBSNOOBS (New Out Of the Box Software) and use it to install Raspbian on a microSD

card. First, head to the NOOBS download page to download the latest version. Click Download

ZIP underneath the first NOOBS option:

NOOBS will start downloading on your system.

Note:Note:Note:Note: Make sure to download NOOBS and not NOOBS Lite.

Once the ZIP file has been downloaded, unzip the contents to a location on your computer.

You’ll be copying these files onto the SD card shortly, but first you need to properly format the

SD card.

You’ll use the o?cial SD Memory Card FormatterSD Memory Card FormatterSD Memory Card FormatterSD Memory Card Formatter from the SD Association. Head to the SD

Association website to download the formatter. Scroll to the bottom and download the SD

formatter for either Windows or macOS:

Once the SD Memory Card Formatter is downloaded, you’re ready to format your SD card for

use on the Raspberry Pi.

Note:Note:Note:Note: Linux users can use fdisk to partition and format a microSD card to the

required FAT32FAT32FAT32FAT32 disk format.

After downloading the SD formatter, open the application. To format the SD card, you’ll need

to do the following:

1. Insert the SD card into your computer.

2. Select the SD card from the Select card dropdown menu.

3. Click the Quick format option under Formatting options.

4. Enter NOOBS into the Volume label text field.

Once the above items are complete, click Format:

Before formatting the card, you’ll be asked to confirm the operation, as it will erase all data

from the card. Click Continue to begin formatting the SD card. It may take a few minutes to

finish formatting:

Once the formatting has completed, you’ll need to copy the NOOBS files that you unzipped

earlier over to the SD card. Select all the files that you extracted earlier:

Drag them to the SD card:

Now that you’ve got NOOBS installed on your SD card, eject the card from your computer.

You’re almost there! In the next section, you’ll do the final setup for your Raspberry Pi.

Final Setup

Now that you have the microSD card and required hardware ready, the final step is to connect

everything together and configure the operating system. Let’s start o2 by connecting all the

peripherals:

1. Insert the microSD card into the card slot on the bottom of the Raspberry Pi.

2. Connect the keyboard and mouse to any of the four USB ports.

3. Connect a display to one of the HDMI ports using an HDMI cable specific to your

Raspberry Pi model.

4. Connect a power supply to the USB power port.

With the peripherals connected, go ahead and power on your Raspberry Pi to configure the

operating system. If you installed Raspbian with the Raspberry Pi Imager, then there’s nothing

else for you to do. You can skip down to the next section to complete the setup.

If you installed NOOBS on your SD card, then you’ll need to complete a couple more steps to

install Raspbian on the SD card:

1. First, power on the Raspberry Pi to load the NOOBS interface.

2. Then, check the checkbox next to the Raspbian option in the list of software to install.

3. Finally, click the Install button at the top left corner of the interface to begin installing

Raspbian on the SD card.

Once the installation is complete, the Raspberry Pi will restart, and you’ll be booted into

Raspbian to complete the setup wizard.

Setup Wizard

On first boot, Raspbian provides a setup wizard to help you configure your password, set your

locale, select a Wi-Fi network, and update the operating system. Go ahead and complete these

steps as instructed.

Once you’ve completed the steps, restart the operating system and you’ll be ready to begin

programming Python on the Raspberry Pi!

Running Python on the Raspberry PiRunning Python on the Raspberry PiRunning Python on the Raspberry PiRunning Python on the Raspberry Pi

One of the best things about working with Python on the Raspberry Pi is that Python is a first-

class citizen on the platform. The Raspberry Pi Foundation specifically selected Python as the

main language because of its power, versatility, and ease of use. Python comes preinstalled on

Raspbian, so you’ll be ready to start from the get-go.

You have many di2erent options for writing Python on the Raspberry Pi. In this tutorial, you’ll

look at two popular choices:

 Using the Mu editorMu editorMu editorMu editor

 Editing remotely over SSHSSHSSHSSH

Let’s start by looking at using the Mu editor to write Python on the Raspberry Pi.

Using the Mu Editor

The Raspbian operating system comes with several preinstalled Python IDEs that you can use

to write your programs. One of these IDEs is Mu. It can be found in the main menu:

Raspberry Pi Icon → Programming → Mu

When you open Mu for the first time, you’ll be given the option to select the Python mode for

the editor. For the code in this tutorial, you can select Python 3:

There’s a chance that Mu may not be preinstalled on your version of Raspbian. If Mu isn’t

installed, then you can always install it by going to the following file location:

Raspberry Pi Icon → Preferences → Recommended Software

This will open up a dialogue containing recommended software for your Raspberry Pi. Check

the box next to Mu and click OK to install it:

While Mu provides a great editor to get started with Python on the Raspberry Pi, you may

want something more robust. In the next section, you’ll connect to your Raspberry Pi over

SSH.

Editing Remotely Over SSH

Often you won’t want to spend the time hooking up a monitor, keyboard, and mouse to write

Python on the Raspberry Pi. Luckily, Raspbian allows you to connect to the Raspberry Pi

remotely over SSH. In this section, you’ll learn how to enable and use SSH to program Python

on the Raspberry Pi.

Enable SSH

Before you can connect to the Raspberry Pi over SSH, you’ll need to enable SSH access inside

the Raspberry Pi Preferences area. Enable SSH by going to the following file path:

Raspberry Pi Icon → Preferences → Raspberry Pi Configuration

Once the configuration appears, select the Interfaces tab and then enable the SSH option:

You’ve enabled SSH on the Raspberry Pi. Now you need to get the IP address for the

Raspberry Pi so you can connect to it from another computer.

Determine the Raspberry Pi IP Address

To access the Raspberry Pi remotely, you need to determine the IP address of the Raspberry

Pi on your local network. To determine the IP address, you need to access

the TerminalTerminalTerminalTerminal application. You can access Terminal here:

Raspberry Pi Icon → Accessories → Terminal

Once Terminal is open, enter the following in the command prompt:

Shell

pi@raspberrypi:~ $ hostname -I

This will display the current IP address for your Raspberry Pi. With this IP address, you can

now connect to your Raspberry Pi remotely.

Connect to the Raspberry Pi

Using the IP address for the Raspberry Pi, you can now SSH into it from another computer:

Shell

$ ssh pi@[IP ADDRESS]

You’ll be prompted to enter the password you created when running the setup wizard during

the Raspbian installation. If you didn’t set a password, then the default password is raspberry.

Enter the password, and after it connects you’ll see the Raspberry Pi command prompt:

Shell

pi@raspberrypi:~ $

Now that you know how to connect, you’re ready to start programming Python on the

Raspberry Pi. You can get started right away using the Python REPL:

Shell

pi@raspberrypi:~ $ python3

Type in some Python to run it on the Raspberry Pi:

Python

>>> print("Hello from your Raspberry Pi!")

Hello from your Raspberry Pi!

Awesome, you’re running Python on the Raspberry Pi!

Remove ads

Creating a python-projects Directory

Before you start building projects with Python on the Raspberry Pi, it’s a good idea to set up a

dedicated directory for your code. The Raspberry Pi has a full file system with many di2erent

directories. Having a reserved place for your Python code will help keep everything organized

and easy to find.

Let’s create a directory called python-projects where you can store Python code for your

projects.

Using Mu

If you plan on using Mu to complete the projects in this tutorial, then you can use it now to

create the python-projects directory. To create this directory, you’ll want to do the following:

1. Open Mu by going to Raspberry Pi Icon → Programming → Mu.

2. Click New in the menu bar to create an empty file.

3. Click Save in the menu bar.

4. Navigate to the /home/pi directory in the directory dropdown.

5. Click the Create New Folder icon in the top-right corner.

6. Name this new directory python-projects and hit Enter.

7. Click Cancel to close.

You’ve created a dedicated directory for your Python code. Head down to the next section to

learn about interacting with physical components in Python.

Over SSH

If you’d rather use SSH to access your Raspberry Pi, then you’ll use the command line to

create the python-projects directory.

Note:Note:Note:Note: Since you’ll be accessing the Raspberry Pi command line, you’ll need to use a

command-line text editor to edit your project files.

Both nano and vim come preinstalled on Raspbian and can be used to edit the project files.

You can also use VS Code to remotely edit files on the Raspberry Pi, but some setup is

required.

Let’s create the python-projects directory. If you aren’t currently logged into the Raspberry Pi,

then use the IP address of the Raspberry Pi to SSH into it from your computer:

Shell

$ ssh pi@[IP ADDRESS]

Once logged in, you’ll see the Raspberry Pi command prompt:

Shell

pi@raspberry:~ $

By default, when you SSH into the Raspberry Pi, you’ll start in the /home/pi directory.

Confirm this now by running pwd:

Shell

pi@raspberry:~ $ pwd

/home/pi

If for some reason you’re not in the /home/pi directory, then switch to it using cd /home/pi:

Shell

pi@raspberry:~/Desktop $ cd /home/pi

pi@raspberry:~ $ pwd

/home/pi

Now in the /home/pi directory, create a new python-projects directory:

Shell

pi@raspberry:~ $ mkdir python-projects

With the python-projects directory created, use cd python-projects to go into the directory:

Shell

pi@raspberry:~ $ cd python-projects

pi@raspberry:~/python-projects $

Great! You’re ready to start coding your first circuits using Python on the Raspberry Pi.

Interacting With Physical ComponentsInteracting With Physical ComponentsInteracting With Physical ComponentsInteracting With Physical Components

In this section, you’ll learn how to interact with di2erent physical components using Python

on the Raspberry Pi.

You’ll be using the gpiozero library that comes preinstalled on Raspbian. It provides an easy-

to-use interface to interact with a variety of GPIO devices connected to the Raspberry Pi.

Electronic Components

Before programming on the Raspberry Pi, you’ll need a few electronic components to build

the projects in the upcoming sections. You should be able to find each of the items below on

Amazon or at your local electronics store.

Breadboard

A breadboardbreadboardbreadboardbreadboard is an essential tool when building circuits. It allows you to quickly prototype

your circuit without having to solder components together.

Breadboards follow a general layout. On the right and left sides, two rails run the length of the

breadboard. Every hole on these rails is connected. Generally, these are designated positive

(voltagevoltagevoltagevoltage, or VCCVCCVCCVCC) and negative (groundgroundgroundground, or GNDGNDGNDGND).

On most breadboards, the positive railpositive railpositive railpositive rail is marked with a positive sign (+) and will have a red

line running next to it. The negative railnegative railnegative railnegative rail is marked with a negative sign (-) and has a blue line

running next to it.

On the interior of the board, component railscomponent railscomponent railscomponent rails run perpendicular to the positive and negative

rails on the sides of the breadboard. Each of these rails contains holes for placing components.

All holes in a single rail are connected. In the middle is a gutter separating the two sides of the

breadboard. Rails on opposite sides of the gutter are not connected.

This is illustrated in the following diagram:

In the diagram above, three colors are used to mark the di2erent types of breadboard rails:

 Red:Red:Red:Red: Positive rail

 Black:Black:Black:Black: Negative rail

 Blue:Blue:Blue:Blue: Component rails

Later in this tutorial, you’ll use these di2erent rails to build full circuits that connect to the

Raspberry Pi.

Jumper Wires

Jumper wires allow you to prototype the connections of your circuit without having to solder

paths between GPIO pins and components. They come in three di2erent types:

1. Male to male

2. Female to male

3. Female to female

It would be good to have at least ten to twenty of each type when you’re building your

Raspberry Pi projects in Python.

Other Components

Along with the breadboard and jumper wires, the projects in this tutorial will use the following

components:

 Light-emitting diodes (LEDs)

 Tactile button

 330 Ω resistor

 Active piezo buzzer

 Passive infrared motion sensor

With the required components in hand, let’s take a look at how you can connect them to the

Raspberry Pi using the GPIO pins.

GPIO Pins

The Raspberry Pi features forty GPIO pins along the top edge of the board. You can use these

GPIO pins to connect the Raspberry Pi to external components.

The pin layout below shows the di2erent types of pins and their locations. This layout is

based on an overhead view of the pins with the Raspberry Pi’s USB ports facing you:

The Raspberry Pi features five di2erent types of pins:

1. GPIO:GPIO:GPIO:GPIO: These are general-purpose pins that can be used for input or output.

2. 3V3:3V3:3V3:3V3: These pins supply a 3.3 V power source for components. 3.3 V is also the internal

voltage that all GPIO pins supply.

3. 5V:5V:5V:5V: These pins supply a 5 V power source, the same as the USB power input that

powers the Raspberry Pi. Some components, such as the passive infrared motion

sensor, require 5 V.

4. GND:GND:GND:GND: These pins provide a ground connection for circuits.

5. ADV:ADV:ADV:ADV: These special-purpose pins are advanced and not covered in this tutorial.

In the next section, you’ll use these di2erent pin types to set up your first component, a tactile

button.

Tactile Button

For your first circuit, you’re going to connect a tactile button to the Raspberry Pi. A tactile

button is an electronic switch that, when pressed, closes a circuit. When a circuit is closed, the

Raspberry Pi will register an ONONONON signal. You can use this ON signal to trigger di2erent actions.

In this project, you’ll use a tactile button to run di2erent Python functions based on the state

of the button. Let’s start by wiring the button to the Raspberry Pi:

1. Connect a femalefemalefemalefemale----totototo----malemalemalemale jumper wire from the Raspberry Pi’s GNDGNDGNDGND pin to

the negative railnegative railnegative railnegative rail of the breadboard.

2. Place a tactile button across the gutter in the middle of the breadboard.

3. Connect a malemalemalemale----totototo----malemalemalemale jumper wire from the negative railnegative railnegative railnegative rail of the breadboard to the

row where the button’s bottombottombottombottom----left legleft legleft legleft leg is placed.

4. Connect a femalefemalefemalefemale----totototo----malemalemalemale jumper wire from the Raspberry Pi’s GPIO4GPIO4GPIO4GPIO4 pin to the

breadboard row where the button’s bottombottombottombottom----right legright legright legright leg is placed.

You can confirm your wiring with the diagram below:

Now that you’ve got your circuit wired up, let’s write the Python code to read input from the

button.

Note:Note:Note:Note: If you’re having trouble finding a specific pin, then make sure to reference the GPIO pin

layout image when building your circuits. You can also purchase a breakout board for easy

breadboarding.

Inside the python-projects directory that you created earlier, save a new file called button.py.

If you’re using SSH to access your Raspberry Pi, then create the file like this:

Shell

pi@raspberrypi:~/ cd python-projects

pi@raspberrypi:~/python-projects $ touch button.py

If you’re using Mu, then create the file with the following steps:

1. Click the New menu item.

2. Click Save.

3. Navigate to the /home/pi/python-projects directory.

4. Save the file as button.py.

With the file created, you’re ready to start coding. Start by importing the Button class from

the gpiozero module. You’ll also need to import pause from the signal module. You’ll look at

why you need pause later:

Python

from gpiozero import Button

from signal import pause

Create an instance of the Button class and pass the pin number as a parameter. In this case,

you’re using the GPIO4GPIO4GPIO4GPIO4 pin, so you’ll pass in 4 as the parameter:

Python

button = Button(4)

Next, define functions that will be called for the di2erent button events that are available on

a Button instance:

Python

def button_pressed():

 print("Button was pressed")

def button_held():

 print("Button was held")

def button_released():

 print("Button was released")

The Button class has three event properties: .when_pressed, .when_held, and .when_released.

These properties can be used to hook up di2erent event functions.

While the .when_pressed and .when_released properties are self-

explanatory, .when_held requires a short explanation. If a function is set to

the .when_held property, then it will only be called if the button is pressed and held for a

certain amount of time.

The hold time for .when_held is determined by the .hold_time property on

the Button instance. The default for .hold_time is one second. You can override this by passing

a float value when creating a Button instance:

Python

button = Button(4, hold_time=2.5)

button.when_held = button_held

This will create a Button instance that will wait two and a half seconds after the button is

pressed and held before calling the button_held() function.

Now that you know about the di2erent event properties on Button, set each of these to their

respective functions that you defined earlier:

Python

button.when_pressed = button_pressed

button.when_held = button_held

button.when_released = button_released

Great! You’ve got your button events set up. The last thing you need to do is to call pause() at

the end of the file. Calling pause() is required to keep the program listening for the di2erent

events. If this wasn’t present, then the program would run once and exit.

Your final program should look like this:

Python

from gpiozero import Button

from signal import pause

button = Button(4)

def button_pressed():

 print("Button was pressed")

def button_held():

 print("Button was held")

def button_released():

 print("Button was released")

button.when_pressed = button_pressed

button.when_held = button_held

button.when_released = button_released

pause()

With the wiring complete and the code all set up, you’re ready to try out your first circuit.

Inside of the python-projects directory, run the program:

Shell

pi@raspberrypi:~/python-projects $ python3 button.py

If you’re using Mu, first make sure the file is saved, then click Run to start the program.

The program is now running and listening for events. Press the button, and you should see the

following in the console:

Shell

Button was pressed

Press and hold the button for at least one second, and you should see the following output:

Shell

Button was held

Finally, when you release the button you should see the following:

Shell

Button was released

Awesome! You’ve just wired and coded your first circuit using Python on the Raspberry Pi.

Since you used pause() in your code, you’ll need to manually stop the program. If you’re

running the program in Mu, then you can click Stop to quit the program. If you’re running this

from the command line, then you can stop the program with Ctrl+C.

With this first circuit under your belt, you’re ready to start controlling some other

components.

LED

For your next circuit, you’ll use Python to blink an LED on and o2 every second. LEDLEDLEDLED stands

for light-emitting diode, and these components produce light when a current is applied. You’ll

find that they’re used everywhere in electronics.

Every LED has two legs. The longer leg is the positive leg, or anode. The electrical current

enters the LED through this leg. The shorter leg is the negative leg, or cathode. The current

exits the LED through this leg.

Current can only flow one direction through an LED, so make sure you’re connecting jumper

wires to the proper leg of the LED.

Here are the steps you’ll need to take to wire this circuit:

1. Connect a femalefemalefemalefemale----totototo----malemalemalemale jumper wire from the Raspberry Pi’s GNDGNDGNDGND pin to

the negative railnegative railnegative railnegative rail of the breadboard.

2. Place an LEDLEDLEDLED into two holes on the breadboard that are next to each other but not in

the same row.

3. Place the longer, positive leglonger, positive leglonger, positive leglonger, positive leg of the LED into the hole on the right side.

4. Place the shorter, negative legshorter, negative legshorter, negative legshorter, negative leg of the LED into the hole on the left side.

5. Place one end of a 330 330 330 330 Ω Ω Ω Ω resistorresistorresistorresistor into a hole in the same breadboard row as

the negative legnegative legnegative legnegative leg of the LED.

6. Place the other end of the resistor into the negative railnegative railnegative railnegative rail of the breadboard

7. Connect a femalefemalefemalefemale----totototo----malemalemalemale jumper wire from the Raspberry Pi’s GPIO4GPIO4GPIO4GPIO4 pin to a hole in

the same breadboard row as the positive legpositive legpositive legpositive leg of the LED.

You can confirm your wiring with the diagram below:

If the wiring looks good, then you’re ready to write some Python to get the LED blinking. Start

by creating a file for this circuit inside of the python-projects directory. Call this file led.py:

Shell

pi@raspberrypi:~/python-projects $ touch led.py

In this code, you’ll create an instance of the LED class and call its .blink() method to make the

LED blink on and o2. The .blink() method has a default timeout of one second. The LED will

continue to blink on and o2 every second until the program is exited.

Start by importing LED from the gpiozero module and pause from the signal module:

Python

from gpiozero import LED

from signal import pause

Next, create an instance of LED called led. Set the GPIO pin to 4:

Python

led = LED(4)

Call the .blink() method on led:

Python

led.blink()

Finally, add a call to pause() to make sure the program doesn’t exit:

Python

pause()

Your complete program should look like this:

Python

from gpiozero import LED

from signal import pause

led = LED(4)

led.blink()

pause()

Save the file and run it to see the LED blink on and o2:

Shell

pi@raspberrypi:~/python-projects $ python3 led.py

The LED should now be blinking on and o2 every second. When you’re done admiring your

Python code in action, stop the program with Ctrl+C or Stop in Mu.

Now you know how to control an LED with Python on the Raspberry Pi. For the next circuit,

you’ll be using Python to produce sound from the Raspberry Pi.

Buzzer

In this circuit, you’ll be wiring an active piezo buzzer to the Raspberry Pi. A piezo buzzer

emits a tone when current is applied. Using this component, your Raspberry Pi will be able to

generate sound.

Like LEDs, a buzzer has a positive and negative leg. The positive leg of the buzzer will either

be longer than the negative leg or there will be a positive sign (+) on the top of the buzzer

showing which leg is the positive leg.

Let’s go ahead and wire up the buzzer:

1. Place a buzzer on the breadboard, noting the placement of the buzzer’s positive legpositive legpositive legpositive leg.

2. Connect a femalefemalefemalefemale----totototo----malemalemalemale jumper wire from the Raspberry Pi’s GNDGNDGNDGND pin to a hole in

the same breadboard row as the negative legnegative legnegative legnegative leg of the buzzer.

3. Connect a femalefemalefemalefemale----totototo----malemalemalemale jumper wire from the Raspberry Pi’s GPIO4GPIO4GPIO4GPIO4 pin to a hole in

the same breadboard row as the positive legpositive legpositive legpositive leg of the buzzer.

Confirm your wiring against the diagram below:

With the wiring set up, let’s move on to the code. Create a file for this circuit inside

the python-projects directory. Call this file buzzer.py:

Shell

pi@raspberrypi:~/python-projects $ touch buzzer.py

In this code, you’ll create an instance of the Buzzer class and call it’s .beep() method to make

the buzzer beep on and o2. The .beep() method’s first two parameters

are on_time and o2_time. These parameters take a float value to set how long the buzzer

should beep on and o2. The default value for both is one second.

Start by importing Buzzer from the gpiozero module and pause from the signal module:

Python

from gpiozero import Buzzer

from signal import pause

Next, create an instance of Buzzer called buzzer. Set the GPIO pin to 4:

Python

buzzer = Buzzer(4)

Call the .beep() method on buzzer. Set the on_time and o2_time parameters to 0.5. This will

make the buzzer beep every half second:

Python

buzzer.beep(0.5, 0.5)

Finally, add a call to pause() to make sure the program doesn’t exit:

Python

pause()

Your complete program should look like this:

Python

from gpiozero import Buzzer

from signal import pause

buzzer = Buzzer(4)

buzzer.beep(0.5, 0.5)

pause()

Save the file and run it to hear the buzzer beep on and o2 every half second:

Shell

pi@raspberrypi:~/python-projects $ python3 buzzer.py

You should hear the buzzer sound on and o2 until you stop the program with Ctrl+C or Stop in

Mu.

Note:Note:Note:Note: If you’re using Mu, then there’s a chance that when you stop the program the tone will

continue. To stop the sound, remove the GND wire to break the circuit.

You may also need to restart Mu if the tone continues when you reconnect the GND wire.

Great! So far you’ve learned how to control three di2erent types of electronic components

with Python on the Raspberry Pi. For the next circuit, let’s take a look at a slightly more

complex component.

Motion Sensor

In this circuit, you’ll be connecting a passive infrared (PIR) motion sensorpassive infrared (PIR) motion sensorpassive infrared (PIR) motion sensorpassive infrared (PIR) motion sensor to the Raspberry Pi.

A passive infrared motion sensor detects any motion in its field of vision and sends a signal

back to the Raspberry Pi.

Adjusting the Sensor

When using a motion sensor, you may need to adjust how sensitive it is to motion and how

long it will send out a signal after motion is detected.

You can make adjustments using two dials on the side of the sensor. You’ll know which dials

they are because they’ll have a cross-shaped indentation in the center, which can be adjusted

with a Phillips-head screwdriver.

The image below shows these dials on the side of the motion sensor:

As the image shows, the left dial sets the signal timeout and the right dial sets the sensor

sensitivity. You can turn these dials clockwise or counterclockwise to adjust them:

 ClockwiseClockwiseClockwiseClockwise increases the timeout and sensitivity.

 CounterclockwiseCounterclockwiseCounterclockwiseCounterclockwise decreases the timeout and sensitivity.

You can adjust these based on your project needs, but for this tutorial turn both dials

counterclockwise all the way. This will set them to their lowest values.

Note:Note:Note:Note: Occasionally, a motion sensor and a Raspberry Pi 3 will not work together correctly.

This results in occasional false positives from the sensor.

If you’re using a Raspberry Pi 3, then make sure to move the sensor as far from the Raspberry

Pi as possible.

Once you’ve adjusted the motion sensor, you’re ready to set up the wiring. The motion

sensor’s design doesn’t allow it to easily connect to a breadboard. You’ll need to connect the

Raspberry Pi’s GPIO pins directly to the pins on the motion sensor with jumper wires.

The image below shows the placement of the pins on the underside of the motion sensor:

You can see there are three pins:

1. VCCVCCVCCVCC for voltage

2. OUTOUTOUTOUT for communicating with the Raspberry Pi

3. GNDGNDGNDGND for ground

Using these pins, you need to take the following steps:

1. Connect a femalefemalefemalefemale----totototo----femalefemalefemalefemale jumper wire from the Raspberry Pi’s 5V5V5V5V pin to the

sensor’s VCCVCCVCCVCC pin.

2. Connect a femalefemalefemalefemale----totototo----femalefemalefemalefemale jumper wire from the Raspberry Pi’s GPIO4GPIO4GPIO4GPIO4 pin to the

sensor’s OUTOUTOUTOUT pin.

3. Connect a femalefemalefemalefemale----totototo----femalefemalefemalefemale jumper wire from the Raspberry Pi’s GNDGNDGNDGND pin to the

sensor’s GNDGNDGNDGND pin.

Now confirm the wiring with the diagram below:

With the motion sensor adjusted and wired to the Raspberry PI, let’s take a look at the Python

code for detecting motion. Start by creating a file for this circuit inside the python-

projects directory. Call this file pir.py:

Shell

pi@raspberrypi:~/python-projects $ touch pir.py

The code for this circuit is going to be similar to the button circuit you made previously. You’ll

create an instance of the MotionSensor class and pass in the GPIO pin number 4 as the

parameter. You’ll then define two functions and set them to

the .when_motion and .when_no_motion properties on the MotionSensor instance.

Let’s take a look at the code:

Python

from gpiozero import MotionSensor

from signal import pause

motion_sensor = MotionSensor(4)

def motion():

 print("Motion detected")

def no_motion():

 print("Motion stopped")

print("Readying sensor...")

motion_sensor.wait_for_no_motion()

print("Sensor ready")

motion_sensor.when_motion = motion

motion_sensor.when_no_motion = no_motion

pause()

motion() is set to the .when_motion property and is called when the sensor detects

motion. no_motion() is set to the .when_no_motion property and is called when motion has

stopped for a certain period. This time is determined by the timeout dial on the side of the

sensor.

You’ll notice that before the .when_motion and .when_no_motion properties are set, there is a

call to .wait_for_no_motion() on the MotionSensor instance. This method will pause the

execution of the code until the motion sensor no longer detects any motion. This is so that the

sensor will ignore any initial motion that may occur as the program is starting up.

Note:Note:Note:Note: Motion sensors can sometimes be too sensitive or not sensitive enough. If you see

inconsistent results in the console when running the code above, then make sure to check that

everything is wired correctly. You may also need to adjust the sensitivity dial on your sensor.

If your results are delayed in the console, then try adjusting down the .threshold property on

the MotionSensor instance. The default value is 0.5:

Python

pir = MotionSensor(4, threshold=0.2)

This will decrease the amount of motion required to make the sensor active. For more

information on the MotionSensor class, see the gpiozero documentation.

Save the code and run it to try out your motion detection circuit:

Shell

pi@raspberrypi:~/python-projects $ python3 pir.py

Readying sensor...

Sensor ready

Wave your hand in front of the sensor. When motion is first detected, motion() is called and

the following is displayed in the console:

Shell

Motion detected

Now stop waving your hand in front of the sensor. After a few seconds, the following will be

displayed:

Shell

Motion stopped

Great! You can now detect motion with your Raspberry Pi. Once you’re done waving at your

Raspberry Pi, go ahead and hit Ctrl+C in the command line or press Stop in Mu to terminate

the program.

With this final circuit, you’ve learned how to use Python on the Raspberry Pi to control four

di2erent components. In the next section, you’ll tie all of this together in a full project.

Building a MotionBuilding a MotionBuilding a MotionBuilding a Motion----Activated Alarm SystemActivated Alarm SystemActivated Alarm SystemActivated Alarm System

Now that you’ve had the chance to connect the Raspberry Pi to a variety of inputs and

outputs, you’re going to create a project that uses what you’ve learned so far.

In this project, you’ll build a motion-activated alarm system that will flash an LED and sound

an alarm when it detects motion in a room. On top of this, you’ll use Python to save a

timestamp to a CSV file detailing each time motion occurs.

Wiring

Here are the steps to complete the wiring:

1. Connect femalefemalefemalefemale----totototo----malemalemalemale jumper wires from the Raspberry Pi’s 5V5V5V5V and GNDGNDGNDGND pins to

the positivepositivepositivepositive and negativenegativenegativenegative rails on the side of the breadboard.

2. Place an LEDLEDLEDLED on the breadboard and connect the Raspberry Pi’s GPIO14GPIO14GPIO14GPIO14 pin to the

LED with a femalefemalefemalefemale----totototo----malemalemalemale jumper wire.

3. Connect the LED’s negative legLED’s negative legLED’s negative legLED’s negative leg to the breadboard’s negative railnegative railnegative railnegative rail through a 330 330 330 330 Ω Ω Ω Ω

resistorresistorresistorresistor.

4. Place a buzzerbuzzerbuzzerbuzzer on the breadboard and connect the Raspberry Pi’s GPIO15GPIO15GPIO15GPIO15 pin to the

buzzer with a femalefemalefemalefemale----totototo----malemalemalemale jumper wire.

5. Connect the buzzer’s negative legbuzzer’s negative legbuzzer’s negative legbuzzer’s negative leg to the breadboard’s negative railnegative railnegative railnegative rail with a malemalemalemale----totototo----

malemalemalemale jumper wire.

6. Connect a femalefemalefemalefemale----totototo----malemalemalemale jumper wire from the breadboard’s positive railpositive railpositive railpositive rail to the

sensor’s VCCVCCVCCVCC pin.

7. Connect a femalefemalefemalefemale----totototo----femalefemalefemalefemale jumper wire from the Raspberry Pi’s GPIO4GPIO4GPIO4GPIO4 pin to the

sensor’s OUTOUTOUTOUT pin.

8. Connect a femalefemalefemalefemale----totototo----malemalemalemale jumper wire from the breadboard’s negative railnegative railnegative railnegative rail to the

sensor’s GNDGNDGNDGND pin.

Confirm the wiring against the diagram below:

Okay, now that you have the circuit wired up, let’s dig into the Python code to set up your

motion-activated alarm system.

Code

As usual, start by creating a file for this project inside the python-projects directory. For this

project, call this file motion_detector.py:

Shell

pi@raspberrypi:~/python-projects $ touch motion_detector.py

The first thing you want to do is import the csv module so you can save a timestamp when

motion is detected. Also, import Path from the pathlib module so you can reference your CSV

file:

Python

import csv

from pathlib import Path

Next, import datetime from the datetime module so you can create a timestamp of the motion

event:

Python

from datetime import datetime

Finally, import the required component classes from gpiozero as well as pause from

the signal module:

Python

from gpiozero import LED, Buzzer, MotionSensor

from signal import pause

With the imports ready, you can set up the three electronic components you’ll be using. Create

instances of the LED, Buzzer, and MotionSensor classes. For each of these, pass in their pin

numbers as parameters:

Python

led = LED(14)

buzzer = Buzzer(15)

motion_sensor = MotionSensor(4)

Next, define the location of a CSV file that will store a timestamp each time motion is

detected. You’ll call it detected_motion.csv. Create a dictionary to hold the timestamp values

that will be written to the CSV:

Python

output_csv_path = Path("detected_motion.csv")

motion = {

 "start_time": None,

 "end_time": None,

}

Create a method that saves the timestamp data to a CSV file. When the file is first created, a

header row is added:

Python

def write_to_csv():

 first_write = not output_csv_path.is_file()

 with open(output_csv_path, "a") as file:

 field_names = motion.keys()

 writer = csv.DictWriter(file, field_names)

 if first_write:

 writer.writeheader()

 writer.writerow(motion)

Define a start_motion() function. This function will have several behaviors:

 Start blinking the led on and o2 every half second

 Make the buzzer beep

 Save the start_time timestamp to the motion dictionary

Add a call to print() so you can watch the events occur while the program is running:

Python

def start_motion():

 led.blink(0.5, 0.5)

 buzzer.beep(0.5, 0.5)

 motion["start_time"] = datetime.now()

 print("motion detected")

Then define an end_motion() function that will have the following behaviors:

 Turn o2 the led and buzzer

 Save the end_time timestamp

 Call write_to_csv() to save the motion data to the CSV file

 Reset the motion dictionary

You’ll also check that a motion["start_time"] value exists before running any of the other code.

You only want to write to the CSV if a start_time timestamp was recorded:

Python

def end_motion():

 if motion["start_time"]:

 led.o2()

 buzzer.o2()

 motion["end_time"] = datetime.now()

 write_to_csv()

 motion["start_time"] = None

 motion["end_time"] = None

 print("motion ended")

Add a call to .wait_for_no_motion() so that any initial motion is ignored:

Python

print("Readying sensor...")

motion_sensor.wait_for_no_motion()

print("Sensor ready")

Set the .when_motion and .when_no_motion properties on the MotionSensor instance:

Python

motion_sensor.when_motion = start_motion

motion_sensor.when_no_motion = end_motion

Finally, end the code with a call to pause() to keep the program running. The full Python code

should look like this:

Python

import csv

from pathlib import Path

from datetime import datetime

from gpiozero import LED, Buzzer, MotionSensor

from signal import pause

led = LED(14)

buzzer = Buzzer(15)

motion_sensor = MotionSensor(4)

output_csv_path = Path("detected_motion.csv")

motion = {

 "start_time": None,

 "end_time": None,

}

def write_to_csv():

 first_write = not output_csv_path.is_file()

 with open(output_csv_path, "a") as file:

 field_names = motion.keys()

 writer = csv.DictWriter(file, field_names)

 if first_write:

 writer.writeheader()

 writer.writerow(motion)

def start_motion():

 led.blink(0.5, 0.5)

 buzzer.beep(0.5, 0.5)

 motion["start_time"] = datetime.now()

 print("motion detected")

def end_motion():

 if motion["start_time"]:

 led.o2()

 buzzer.o2()

 motion["end_time"] = datetime.now()

 write_to_csv()

 motion["start_time"] = None

 motion["end_time"] = None

 print("motion ended")

print("Readying sensor...")

motion_sensor.wait_for_no_motion()

print("Sensor ready")

motion_sensor.when_motion = start_motion

motion_sensor.when_no_motion = end_motion

pause()

Save the file and run it to test out your new motion detector alarm:

Shell

pi@raspberrypi:~/python-projects $ python3 motion_detector.py

Readying sensor...

Sensor ready

Now if you wave your hand in front of the motion detector, then the buzzer should start

beeping and the LED should flash. If you stop moving for a few seconds, then the alarm

should stop. In the console you should see the following:

Shell

pi@raspberrypi:~/python-projects $ python3 motion_detector.py

Readying sensor...

Sensor ready

motion detected

motion ended

motion detected

motion ended

...

Go ahead and stop the program with Stop in Mu or Ctrl+C. Let’s check out the CSV file that

was generated:

Shell

pi@raspberrypi:~/python-projects $ cat detected_motion.csv

start_time,end_time

2020-04-21 10:53:07.052609,2020-04-21 10:53:13.966061

2020-04-21 10:56:56.477952,2020-04-21 10:57:03.490855

2020-04-21 10:57:04.693970,2020-04-21 10:57:12.007095

As you can see, the timestamps for the motion’s start_time and end_time have been added to

the CSV file.

Congratulations! You’ve created a non-trivial electronics project with Python on the

Raspberry Pi.

Next Steps

You don’t have to stop here. There are many ways you could improve this project by

leveraging the capabilities of Python on the Raspberry Pi.

Here are some ways to level up this project:

 Connect the Raspberry Pi Camera Module and have it take a photo whenever motion

is detected.

 Connect a speaker to the Raspberry Pi and use PyGame to play a sound file to

intimidate an intruder.

 Add a button to the circuit to allow a user to manually toggle motion detection on or

o2.

There are many ways to upgrade this project. Let us know what you come up with!

ConclusionConclusionConclusionConclusion

The Raspberry Pi is an amazing computing device that just keeps getting better. It’s packed

with features that make it the go-to device for physical computing.

In this tutorial, you’ve learned how to:In this tutorial, you’ve learned how to:In this tutorial, you’ve learned how to:In this tutorial, you’ve learned how to:

 Set up a Raspberry PiRaspberry PiRaspberry PiRaspberry Pi and run Python code on it

 Read input from sensorssensorssensorssensors

 Send output to electronic componentselectronic componentselectronic componentselectronic components

 Build a cool project using Python on the Raspberry Pi

Python is the perfect complement to the Raspberry Pi, and with the skills you’ve learned

you’re ready to tackle cool and innovative physical computing projects. We can’t wait to hear

what you build!

